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LEITER TO THE EDITOR 

Monte Carlo studies of two-dimensional percolation 

E Stoll and C Dombt 
IBM Research Laboratory Zurich, 8803 Riischlikon, Switzerland 

Received 12 January 1978 

Abstract. A one-spin flip king model is used to provide data on cluster statistics for 
random and king percolation. The concentration p is controlled by the magnetic field. At 
sufficiently high temperatures the system corresponds to random percolation, and the 
theoretical formula s / n  = (1 - p ) / p  is verified for large clusters at critical concentration p c  
(s =number of boundary sites). It is also found that the relation is accurately satisfied for 
all percolating clusters when p > p c  but not for king percolation at temperature 2Tc. For 
random percolation with p > p c  the finite n-clusters are found to follow an asymptotic 
decay of the form exp (-b(p)n"') in accord with theory. 

The two-dimensional one-spin flip Ising model (Glauber model) has been used pre- 
viously to provide statistical data on Ising clusters in zero magnetic field as a function 
of temperature (Domb et a1 1975, Domb and Stoll 1977). By keeping the tempera- 
ture constant, and varying the magnetic field to change the concentration, similar data 
can be derived from this model for percolation. If the temperature is sufficiently high 
for the coupling between spins to be negligible the data correspond to random 
percolation. For lower temperatures the data correspond to correlated or Ising 
percolation which has begun to attract attention recently (Muller-Krumbhaar 1974, 
Coniglio 1975). A similar approach to the above has been used recently by Odagaki 
et a1 (1975). 

Details of the Monte Carlo procedure and its limitations in the simulation of an 
infinite system are given elsewhere (Stoll et a1 1973, Schneider and Stoll 1975). The 
system considered is a 110 X 110 simple quadratic lattice subject to periodic boundary 
conditions. An important aspect is the averaging of the data over a large number of 
configurations to obtain data with sufficiently small sampling errors. We have adopted 
the following procedure. 

A total number of 40 000 configurations is generated for each concentration p .  As 
a first step 200 successive configurations are grouped together and averaged linearly; 
an averaging and smoothing procedure is then used on the 200 groups. 

Let us denote by Pi j (n)  the number of n-clusters in the jth configuration of the zth 
group; this is a function of p but for convenience we will not show this dependence 
explicitly. We first form 
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and the standard deviation is given by the usual formula 

In the next step we average for fixed n the 200 Pi(n). In this way we obtain the 
mean value P ( n )  and the standard deviation AiP(n) defined by 

1 200 

200 i = l  
P(n)=- 1 E ( n )  (3) 

and 
200 1 / 2  

AiP(n)= ( E  j = 1  (P i ( r1) -P(n))~/199)  . (4) 

In the case where all Pii(n) are independent AiP(n) and APi(n) are related by 
1 200 
- C (APi(n))2 - ( (AP(n) )2 )  = 200(AiP(n))2. 
200 i = l  

If the Pii are correlated relation (5) is no longer valid. In this case the right-hand and 
left-hand side expressions in ( 5 )  are related by a number K, 

K is a measure of the correlation. We expect the uncertainty of P(n),  namely SP(n), 
to increase by a factor of JK so that in analogy to the statistics of an independent 
distribution: 

SP(n ) = [ ( (AP(n))2)K/40000] 1’2. (7) 
Furthermore for large n the fluctuations remain of the order P(n),  and the 

function P(n)  is therefore ‘folded’ by a triangular function in a manner analogous to 
the use of high-frequency filters in electrical engineering. The width of the triangle is 
adjusted so that the P(n)  with good statistics are smoothed over a small range of n, 
whilst those with poor statistics are averaged over a large range. 

Define a triangle function T( j ,  x) with the following properties: 

lil>ux Io 
T(j,x)=\A(l-&) O s j s u x  

-ux  “ j  s 0. 

The constant A is chosen so that 

T(j ,  X)’ 1. 
i 

The smoothed values P ( n )  are then given by 

P ( n ) =  C ~ ( n  - j )T ( j ,  S P ( ~  - j ) / ~ ( n  - j ) ) .  
i 

The value of cr used in our calculations was 100. 
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Denoting the number of perimeter sites in a cluster by s, the parameter s / n  ( = a )  is 
of considerable importance in percolation @omb 1976), and at the critical concen- 
tration its limiting value for large clusters has been shown to be (Leath 1976) 

1-Pc a, = -. 
Pc 

We first used the data to test relation (11) and to investigate the behaviour of s / n  for 
large clusters as a function of p. The results are shown in figure 1. Relation (11) is 
seen to be well satisfied, but in addition we found that for the percolating cluster 
(p >pc) a relation analogous to (1 1) is well satisfied for all p, 

(f) =-* 1-P  
percolating P 

Figure 1. s / n  against p for random percolation (limiting values for large n). Points 
correspond to Monte Carlo data, and the full curve represents (l-p)/p. 

The accuracy with which relation (12) is satisfied is indicated by the detailed 
numerical data in table 1. It will be seen that the maximum error arises at p =pc 
where it is known that the relation is exact. It is therefore reasonable to conclude that 
relation (12) is exact for p>pc. We have since learned that Dr Alex Hankey has 
derived relation (12) independently on theoretical grounds (Hankey 1978). 

Table 1. Comparison of s / n  with (1 - p ) / p  for percolating clusters. 

1-P - P 
P 

*0.3 i 0.593 ( p , )  0.68634 0.68010 -9.10 
0.618 0.61802 0,61812 -0.17 
0.6305 0.58604 0.58601 -0.05 
0.643 0.55521 0.55557 +0.65 
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For p < p c  the data fitted a relation of the form 

Such a relation has been suggested by Stauffer (1978) on the basis of a scaling 
hypothesis with 8 equal to PS - 1. Whilst our data are consistent with this hypothesis 
(A = 6 0 , e  = 2) they are not conclusive since the data can be fitted equally well by 
other values of (A, e). 

When correlations are present between overturned spins there is no longer any 
theoretical support for any formulae of type (11) or (12). In figure 2 we have plotted 
the data for T = 2 T c  in the same way as in figure 1, and it will be seen that the 
formulae are no longer satisfied. One must perhaps seek new relations involving 
suitable parameters of the two-dimensional Ising model in a non-zero field. 

P 

Figure 2. s / n  against p for Ising percolation with T = 2Tc (limiting values for large n) .  
Points correspond to Monte Carlo data, and the full curve represents (1 - p ) / p .  

lg n 

Figure 3. lg (-lg z ( n ,  p ) / z ( n ,  p c ) )  against lg n.  
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Finally we examined the distribution of finite n-clusters for p > p c .  For sufficiently 
large clusters there is theoretical support (Stauffer 1978, Kunz and Souillard 1977, 
Hankey 1978) for the formula 

z (n ,  p ) - - A ( n )  exp ( - N p ) n ” * )  (14) 
in two dimensions, where z (n ,  p) is the number of p-clusters at concentration p. To 
test (14), we plotted the function 

k [-lg (2 (4 P ) / Z  (4 Pc))l, (15) 
against lg n, and the results are shown in figure 3 for p = 0.618,0.6305, and 0.643. It 
will be seen that the curves approach linearity for large n, and our estimates of 
0.48-0.49 of the limiting slopes are quite close to the theoretical value of 3. 
We are grateful to T Schneider, D Stauffer and A Hankey for helpful discussion and 
correspondence. 
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